Publicaciones Similares

  • Análisis de datos

    En el Análisis de Datos (o Data Science) tenemos cinco etapas: Enmarcar el problema. Hacer las preguntas adecuadas.    – ¿Cuál es el objetivo?    – ¿Qué queremos estimar o predecir? Adquirir y preparar los datos.    – ¿Qué recursos tenemos para obtener datos?    – ¿Qué información es relevante?    – Limpiar y filtrar…

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Descenso del gradiente

    El método del descenso del gradiente (gradient descent) es un algoritmo de optimización que permite converger hacia el valor mínimo de una función mediante un proceso iterativo. En aprendizaje automático básicamente se utiliza para minimizar una función que mide el error de predicción del modelo en el conjunto de datos. A esta función se le…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *