Regresión logística
El algoritmo de regresión logística consiste en:
- Tomar los datos
- Elegir un modelo aleatorio
- Calcular el error
- Minimizar el error y obtener un modelo mejor
El algoritmo de regresión logística consiste en:
Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…
Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…
Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…
1958 – Perceptrón 1965 – Perceptrón multicapa 1980’s Neuronas Sigmoidales Redes Feedforward Retropropagación 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN) 1997 – Long short term memory (LSTM) 2006 – Deep Belief Networks (DBN): Nace deep learning Restricted Boltzmann Machine Encoder / Decoder = Auto-encoder 2014 – Generative Adversarial Networks (GAN)
El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…
El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…