Publicaciones Similares

  • Descenso del gradiente

    El método del descenso del gradiente (gradient descent) es un algoritmo de optimización que permite converger hacia el valor mínimo de una función mediante un proceso iterativo. En aprendizaje automático básicamente se utiliza para minimizar una función que mide el error de predicción del modelo en el conjunto de datos. A esta función se le…

  • Machine Learning

    Razonamiento Introducción. Sistemas expertos Un sistema experto es un sistema informático (hardware o software) que simula a expertos humanos en cierta área de especialización dada. Razonamiento aproximado. Tratamiento de la incertidumbre Fuentes de incertidumbre Se pueden clasificar las fuentes de incertidumbre en los siguientes grupos: Deficiencias de la información, características del mundo real, y deficiencias…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Chat Completion vs Asistentes Open AI

    Modelos de Finalización de Chat: Funcionamiento Básico: Estos modelos, como GPT-4 o GPT-4o, reciben una secuencia de mensajes como entrada y generan una respuesta basada en ellos. Limitaciones: Falta de Memoria Persistente: No retienen automáticamente el historial de mensajes. Por ejemplo, si preguntas "¿Cuál es la capital de Japón?" y luego "Cuéntame algo sobre la…

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *