Publicaciones Similares

  • Análisis de datos

    En el Análisis de Datos (o Data Science) tenemos cinco etapas: Enmarcar el problema. Hacer las preguntas adecuadas.    – ¿Cuál es el objetivo?    – ¿Qué queremos estimar o predecir? Adquirir y preparar los datos.    – ¿Qué recursos tenemos para obtener datos?    – ¿Qué información es relevante?    – Limpiar y filtrar…

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

  • Razonamiento y aprendizaje

    Razonamiento Introducción. Sistemas expertos Un sistema experto es un sistema informático (hardware o software) que simula a expertos humanos en cierta área de especialización dada. Razonamiento aproximado. Tratamiento de la incertidumbre Fuentes de incertidumbre Se pueden clasificar las fuentes de incertidumbre en los siguientes grupos: Deficiencias de la información, características del mundo real, y deficiencias…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *