Publicaciones Similares

  • Minería de datos

    Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Chat Completion vs Asistentes Open AI

    Modelos de Finalización de Chat: Funcionamiento Básico: Estos modelos, como GPT-4 o GPT-4o, reciben una secuencia de mensajes como entrada y generan una respuesta basada en ellos. Limitaciones: Falta de Memoria Persistente: No retienen automáticamente el historial de mensajes. Por ejemplo, si preguntas "¿Cuál es la capital de Japón?" y luego "Cuéntame algo sobre la…

  • Descenso del gradiente

    El método del descenso del gradiente (gradient descent) es un algoritmo de optimización que permite converger hacia el valor mínimo de una función mediante un proceso iterativo. En aprendizaje automático básicamente se utiliza para minimizar una función que mide el error de predicción del modelo en el conjunto de datos. A esta función se le…

  • Machine Learning

    Introducción Los términos machine learning y aprendizaje automático se utilizan indistintamente. Inteligencia artificial Aunque a veces se usan indistintamente los términos inteligencia artificial y machine learning, machine learning es solo una parte de la inteligencia artificial. Ejemplos en los que se utiliza hoy en día la inteligencia artificial son: Detección del fraude. Programación de recursos….

  • Análisis de datos

    En el Análisis de Datos (o Data Science) tenemos cinco etapas: Enmarcar el problema. Hacer las preguntas adecuadas.    – ¿Cuál es el objetivo?    – ¿Qué queremos estimar o predecir? Adquirir y preparar los datos.    – ¿Qué recursos tenemos para obtener datos?    – ¿Qué información es relevante?    – Limpiar y filtrar…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *