Publicaciones Similares

  • Agentes de IA

    La inteligencia artificial (IA) está revolucionando la forma en que interactuamos con el mundo. Entre las aplicaciones más interesantes y útiles se encuentran los agentes de IA, programas diseñados para realizar tareas específicas, aprender de la experiencia y adaptarse a nuevas situaciones. En este artículo, exploraremos qué son los agentes de IA, cómo funcionan y…

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *