Publicaciones Similares

  • Agentes de IA

    La inteligencia artificial (IA) está revolucionando la forma en que interactuamos con el mundo. Entre las aplicaciones más interesantes y útiles se encuentran los agentes de IA, programas diseñados para realizar tareas específicas, aprender de la experiencia y adaptarse a nuevas situaciones. En este artículo, exploraremos qué son los agentes de IA, cómo funcionan y…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

  • Razonamiento y aprendizaje

    Razonamiento Introducción. Sistemas expertos Un sistema experto es un sistema informático (hardware o software) que simula a expertos humanos en cierta área de especialización dada. Razonamiento aproximado. Tratamiento de la incertidumbre Fuentes de incertidumbre Se pueden clasificar las fuentes de incertidumbre en los siguientes grupos: Deficiencias de la información, características del mundo real, y deficiencias…

  • Chat Completion vs Asistentes Open AI

    Modelos de Finalización de Chat: Funcionamiento Básico: Estos modelos, como GPT-4 o GPT-4o, reciben una secuencia de mensajes como entrada y generan una respuesta basada en ellos. Limitaciones: Falta de Memoria Persistente: No retienen automáticamente el historial de mensajes. Por ejemplo, si preguntas "¿Cuál es la capital de Japón?" y luego "Cuéntame algo sobre la…

  • Historia de las redes neuronales

    1958 – Perceptrón 1965 – Perceptrón multicapa 1980’s Neuronas Sigmoidales Redes Feedforward Retropropagación 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN) 1997 – Long short term memory (LSTM) 2006 – Deep Belief Networks (DBN): Nace deep learning Restricted Boltzmann Machine Encoder / Decoder = Auto-encoder 2014 – Generative Adversarial Networks (GAN)

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *