Publicaciones Similares

  • Deep Learning

    Introducción Redes neuronales Perceptrón Softmax Entropía cruzada Regresión logística Descenso del gradiente Perceptrones multicapa Feedforward Retropropagación Convolutional Neural Network Historia de las redes neuronales – rhernando.net Bibliografía Libros Redes neuronales & deep learning, Fernando Berzal Cursos AI Programming with Python Nanodegree Juno Lee, Mat Leonard, Jennifer Staab, Juan Delgado, Mike Yi, Ortal Arel, Luis Serrano…

  • Feedforward

    Se llama redes feedforward a las redes en que las salidas de una capa son utilizadas como entradas en la próxima capa. Esto quiere decir que no hay loops «hacia atrás». Siempre se «alimenta» de valores hacia adelante. El concepto de «fully connected Feedforward Networks» se refiere a que todas las neuronas de entrada, están…

  • Machine Learning

    Introducción Los términos machine learning y aprendizaje automático se utilizan indistintamente. Inteligencia artificial Aunque a veces se usan indistintamente los términos inteligencia artificial y machine learning, machine learning es solo una parte de la inteligencia artificial. Ejemplos en los que se utiliza hoy en día la inteligencia artificial son: Detección del fraude. Programación de recursos….

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Minería de datos

    Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *