Publicaciones Similares

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

  • Feedforward

    Se llama redes feedforward a las redes en que las salidas de una capa son utilizadas como entradas en la próxima capa. Esto quiere decir que no hay loops «hacia atrás». Siempre se «alimenta» de valores hacia adelante. El concepto de «fully connected Feedforward Networks» se refiere a que todas las neuronas de entrada, están…

  • Retropropagación

    La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Regresión logística

    El algoritmo de regresión logística consiste en: Tomar los datos Elegir un modelo aleatorio Calcular el error Minimizar el error y obtener un modelo mejor

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *