Publicaciones Similares

  • Retropropagación

    La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Perceptrones multicapa

    Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…

  • Minería de datos

    Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…

  • Regresión logística

    El algoritmo de regresión logística consiste en: Tomar los datos Elegir un modelo aleatorio Calcular el error Minimizar el error y obtener un modelo mejor

  • Softmax

    La función Softmax La función Softmax (o función exponencial normalizada)es equivalente a la sigmoide, pero cuando el problema de clasificación en lugar de tener dos clases tiene tres o más. La función está dada por $$ \sigma_j(\vec{z}) = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}, \mbox{ para } j=1,\dots K $$ En python la podríamos definir de la siguiente forma:…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *