Publicaciones Similares

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Razonamiento y aprendizaje

    Razonamiento Introducción. Sistemas expertos Un sistema experto es un sistema informático (hardware o software) que simula a expertos humanos en cierta área de especialización dada. Razonamiento aproximado. Tratamiento de la incertidumbre Fuentes de incertidumbre Se pueden clasificar las fuentes de incertidumbre en los siguientes grupos: Deficiencias de la información, características del mundo real, y deficiencias…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Deep Learning

    Introducción Redes neuronales Perceptrón Softmax Entropía cruzada Regresión logística Descenso del gradiente Perceptrones multicapa Feedforward Retropropagación Convolutional Neural Network Historia de las redes neuronales – rhernando.net Bibliografía Libros Redes neuronales & deep learning, Fernando Berzal Cursos AI Programming with Python Nanodegree Juno Lee, Mat Leonard, Jennifer Staab, Juan Delgado, Mike Yi, Ortal Arel, Luis Serrano…

  • Retropropagación

    La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *